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Role of body rotation in bacterial flagellar bundling

Thomas R. Powers*
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~Received 5 July 2001; published 10 April 2002!

In bacterial chemotaxis,E. coli cells drift up chemical gradients by a series of runs and tumbles. Runs are
periods of directed swimming, and tumbles are abrupt changes in swimming direction. Near the beginning of
each run, the rotating helical flagellar filaments that propel the cell form a bundle. Using resistive-force theory,
we show that the counterrotation of the cell body necessary for torque balance is sufficient to wrap the
filaments into a bundle, even in the absence of the swirling flows produced by each individual filament.
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Although bacteria are among the simplest systems for
study of cell motility, many puzzles remain. Chief amo
these is the mechanics of the bundling and unbundling
flagellar filaments in the chemotaxis behavior of bacte
such asE. coli and Salmonella@1,2#. These cells move to
ward higher concentrations of favorable chemicals by
ecuting a series of runs and tumbles@3#. The runs are periods
of directed swimming. At the end of each run, the cell ra
domizes its direction by tumbling. If the cell happens to he
in a favorable direction, the likelihood of tumbling reduce
making runs in this direction longer on average compared
runs in the unfavorable direction. Propulsion during a run
generated by the rotation of several helical propellers, kno
as flagellar filaments. Unlike eukaryotic flagella@2#, bacterial
flagellar filaments are passive elements driven by rotary
tors embedded in the cell wall. Near the beginning of a r
the motors turn in a counterclockwise direction~when
viewed from the outside of the cell!, and the left-handed
filaments come together to form a bundle. At the end o
run, one or more of the motors reverses, and the corresp
ing filaments fly out of the bundle and cause the cell
tumble. This process is complex and involves changes
filament handedness and pitch. The cell soon sets out
new course but regains its initial speed only after the aber
motors have reversed again and their filaments have rega
their normal conformation and rejoined the bundle@4#.

Although qualitative partial explanations for bundle fo
mation have appeared in the literature@5–7#, a mathematical
theory has not. In this paper we begin to construct this the
with a quantitative treatment of one aspect of the bundl
phenomenon: the role of the cell body rotation. This rotat
and the accompanying hydrodynamic resistance arise to
ance the torque exerted by the rotating bundle on the
body. Thus, in the body-fixed frame, there are two kinds
flows that contribute to bundling: the flow due to frame r
tation, and the swirling flows set up by each individual fil
ment. Here we focus on the flow due to rotation of the bo
fixed frame; the swirling flows and interactions amo
flagellar filaments will be treated in a separate publicat
@8#. Our treatment is in the spirit of Machin@9#, who used a
similar approach to argue that eukaryotic flagella could
be passive elements driven by motors at the cell body~see
also Ref.@10#!.
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Figure 1 illustrates the model problem. For simplicity, r
place the helices with straight but flexible rods of lengthL,
rotated with the frequencyvB about the cell body axis o
symmetry,z. Let b denote the distance between the axis
the unstressed rod and thez axis. Since the body is about
micron across, and flagellar filaments are typically six to
microns long, we supposeb!L. We also disregard the rota
tional disturbanceflow arising from the no-slip condition a
the cell body. In the body-fixed frame, this disturbance flo
reduces the net rotational flow near the body. We disreg
this disturbance flow since the flow field of a sphere of rad
a rotating with angular velocityv takes the formv5v
3r (a/r )3, falling off rapidly with r @11#. Likewise, it is ar-
gued below that the axial drag on a filament due to the n
zero swimming velocity plays little role in our problem. F
nally, we focus our attention on the contribution to flagel
filament wrapping due to body rotation, and not the flows
up by the individual rotating filaments, by ignoring the h
drodynamic interactions among the rods. Thus, it suffices
consider the shape of a single rod.

During runs, the left-handed flagellar filaments turn cou
terclockwise~when viewed from outside the cell!, and the
body turns clockwise~when viewed from behind, i.e., from
the distal end of the bundle!. When our model filament is
turned about the body-rotation axisz in this same sense
~clockwise when viewed from the positivez-axis, see Fig. 1!,
it forms a right-handed shape~e.g., see Fig. 2 and note tha
the proximal endx/L5b50.1 is in the planez50, and the
distal end withx near 0 has positivez coordinate!. Further-
more, two left-handed helices rotating about their respec
axes with proximal ends held stationary will lead to a flo

FIG. 1. Model problem. A naturally straight but flexible rod
initially parallel to thez axis, with one end held fixed with zero
moment atx5b, y50, z50. We seek the steady-state shape wh
the end of the rod is forced to rotate in thex-y plane about thez axis
at frequencyvB .
©2002 The American Physical Society03-1
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which also tends to wrap the helices around each other
right-handed manner@8#. Thus, the body-rotation effec
treated here and the swirling flow effect treated in Ref.@8#
act to wrap the filaments in the same sense.

Since typical Reynolds numbers for swimming bacte
are of order 1026 @3#, inertia is unimportant and the stead
state rod shape is determined by a balance of viscous
elastic forces per unit length. For gentle distortions of a sl
der body, the viscous forces per unit length are well appro
mated by the resistive-force coefficients~e.g, see@7#, and
references therein!: f5z'u'1z iui , whereu' andui are the
perpendicular and parallel components of the local rod
locity relative to the fluid velocityv:u5]r /]t2v. The trans-
verse friction coefficient~per unit length! is of the form

z''
4ph

ln~L/a!11/2
, ~1!

whereh is the fluid viscosity, anda is the rod radius@7#. As
discussed below,z i does not enter the analysis since we wo
in the linearized approximation. Resistive-force theory giv
an accurate value for the drag force per unit length o
slender filament except near the filament ends; however,
effect of this error on the shape isO(a/L) @12#. There is also
a viscous torque tending to twist the rod; however, the effe
of this torque are subleading compared to the effects of
translational drag@13#. To see why, note that the total torqu
from rotational drag isO(vz rL), wherez r54pha2 is the
friction coefficient for rotation@14#. The total torque from
translational drag isO„b(vbz')l …, where, as we shall se
below, only the portion of the rod within a distancel of the
held end (z50) contributes to the translational drag. Th
ratio of these two torques isO„(a/b)2(L/l )@ log(L/a)
11/2#…. For the representative valuesL510 mm, a

FIG. 2. Projection of shapes of a rotating flexible rod onto thex-
y plane for l /L50.1 ~solid line!, l /L50.2 ~dashed line!, and
l /L50.5 ~dot-dashed line!.
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'10 nm, andb'1 mm, this ratio is small even ifL/l
'10. Therefore, we disregard rotational drag and tw
strain.

To find the bending force per unit length, note that sin
b!L, the displacement of any rod element will also
small. Thus, the elastic energy is well approximated by
quadratic expression

E5
1

2
AE F S ]2x

]z2D 2

1S ]2y

]z2D 2Gdz, ~2!

wherex and y are as in Fig. 1, andA is the bend modulus
@15#. Since the variation in rod shape is rapid for sufficien
high rotation rate, even for smallb, this approximation even-
tually fails and must be replaced by the full geometrica
nonlinear elastic rod energy. As we discuss below, the ro
tion rates of interest are small enough for Eq.~2! to hold. The
variational derivative of Eq.~2! yields the elastic bending
force per unit length:2dE/dr'52A]4r' /]z4, where r'

[xx̂1yŷ.
To leading order forb!L, the motion of the rod is purely

perpendicular to the rod centerline, yielding the equation
motion @9#

z'S ]r'

]t
2v'D52A

]4r'

]z4
, ~3!

wherev' is the transverse fluid velocity. Since inertia is u
important in the limit of zero Reynolds number, Eq.~3! ap-
plies equally well to the rotating frame in which the rod
fixed and the flow isv'5vBẑ3r' . Such a flow tends to
wrap the rod around thez axis in a shape with a helica
modulation and exponential envelope. In the steady state,
~3! reduces to

2y5l 4
]4x

]z4 , ~4!

x5l 4
]4y

]z4 , ~5!

where l [(A/z'vB)1/4 is the characteristic length scale a
sociated with bending and drag@9#. The solution to Eqs.~4!
and~5! is a simple generalization of Machin’s solution to th
in-plane bending problem,

x~z!5 (
n51

8

Anexp~r nz/l !, ~6!

where r 1 , . . . ,r 8 are the eight eighth roots of21. The
wavelengthsln and decay lengthsnn of the eight fundamen-
tal complex solutions exp(rnz/l ) ~with r n52p i /ln11/nn)
are comprised of the four possible combinations ofln5
616.419 andnn561.0824, and the four possible combin
tions of ln566.8009 andnn562.6131.

The boundary conditions determine the amplitudes a
phases of the coefficientsAn . At the distal endz5L, there is
zero force and moment:A]3r' /]z350, A]2r' /]z250 @15#.
3-2
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At the proximal end, flagellar filaments are connected to
rotary motor by a hook that is more flexible than the rest
the filament. We simply model this flexible connection as
hinge with zero moment atz50: A]2r' /]z250. ~The other
extreme, a rigid hook with]r' /]z50 leads to qualitatively
similar shapes forl /L,1, except nearz50.! Finally, r'(z
50)5bx̂. Applying these boundary conditions to the sol
tions in Eq. ~6! with b5L/10 yields the shapes shown
Figs. 2–4. For largel , the rod is very stiff and does no
bend; it is easy to show that in the limit ofl /L@1 that
x(z)5b(123z/2)1O„(L/l )4

… and y(z)5O„(L/l )4
… for

FIG. 3. Shapes of a rotating flexible rod, projected onto thez-x
plane, forl /L50.1 ~solid line!, l /L50.2 ~dashed line!, and l /L
50.5 ~dot-dashed line!. Vertical amplitudes have been exaggerat
for clarity.

FIG. 4. Shapes of a rotating flexible rod, projected onto they-z
plane, forl /L50.1 ~solid line!, l /L50.2 ~dashed line!, and l /L
50.5 ~dot-dashed line!. Vertical amplitudes have been exaggerat
for clarity.
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the hinged~zero moment! boundary condition atz50. In the
lab frame, the rod pivots about the pointz/L52/3, tracing
out a cone~a rigid rod confined to the plane also pivots abo
this point in a viscous fluid@10#!. When l /L,1, the rod
spirals around the axis of rotation, with the spiral becom
more complete asl gets smaller and smaller. Note the a
isotropy; the projection of the shape onto thex-y plane is
elongated along thex axis~Fig. 2!. The rod configuration is a
compromise between minimizing the bending energy a
minimizing the dissipation rate. Forl /L@1, elasticity domi-
nates, and the rod is straight. Forl /L!1, viscous effects
dominate and the rod bends to align along the axis of rota
and thus minimize the dissipation rate. In this limit, the li
ear approximation for the shape of the rod becomes inva
and we must replace Eq.~2! with the full expression for the
curvature. This nonlinear problem is readily solved by sta
dard methods~see, e.g.,@16#!; the result is that inaccuracie
of only a few percent arise whenl /L'1/10.

To assess the importance of the role of body rotation
bundling, we estimate the characteristic lengthl . Various
estimates have appeared for the flagellar filament stiffnesA,
from 10224 N m2 @17# to 10222 N m2 @18#. Fortunately, the
characteristic lengthl is not very sensitive to the value ofA.
To estimate the transverse drag coefficientz' , Eq. ~1!, we
use the viscosity of waterh50.001 N s/m2, a typical length
L510 mm, and a diameter 2a520 nm. With a typical body
rotation rate ofvB510 Hz @6# and the range of stiffnesse
quoted above, the characteristic lengthl is found to be two
to six microns. Therefore, the filaments are sufficiently fle
ible for the observed body-rotation rate to contribute sign
cantly to bundling. Furthermore, the linear treatment of
rod shape is justified. Presumably, body rotation is especi
important for the bundles which include many right-hand
filaments and a single left-handed filament, as observe
Ref. @4#.

Including axial drag does not alter the conclusions. Ax
drag due to the swimming velocity leads to a tension gra
ent in the rod that slightly increases the spiral pitch. Assu
ing a constant tension equal to the maximum tension at
base of the rod and disregarding the shadow effect of the
body yields an upper bound on the change in pitch. Fo
swimming velocity of about 30mm/sec, the change in pitch
is small compared to the pitch.

The purpose of this work has been to point out the imp
tance of body rotation for flagellar filament bundling. In o
der to focus on the essential physics of this element of
bundling phenomenon, we have disregarded several im
tant but complementary effects, such as the helical shap
the flagellar filament and the flows induced by the individu
filaments@8#. Despite these simplifications, we have show
that bacterial flagellar filaments are flexible enough for bo
rotation to lead to wrapping.

I am indebted to R.E. Goldstein and G. Huber for impo
tant conversations and ongoing collaborations. This work
supported by NSF Grant No. CMS-0093658.
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